Norine: computational platform dedicated to nonribosomal peptides

<u>Campart, C.^{1,2}</u>, Flissi, A.², Ricart, E.^{3,4}, Chevalier, M.⁵, Dufresne, Y.², Michalik, J.^{2,6}, Jacques, P.⁷, Flahaut, C.⁵, Lisacek, F.^{3,4,8}, Leclère, V.⁵, Pupin, M.²

*lead presenter (Arial, 11, aligned left)

¹clementine.campart@univ-lille.fr

² Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France

³ Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland

⁴ Computer Science Department, University of Geneva, CUI, 7 route de Drize, 1227 Carouge, Switzerland

⁵ Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Cte dOpale, EA 7394-ICV- Institut Charles Viollette, F-59000 Lille, France

⁶ bilille, CNRS, cité scientifique, F-59650 Villeneuve dAscq, France

⁷ TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Lige, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium

⁸ Section of Biology, University of Geneva, Sciences III, 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland aboratory

Nonribosomal peptides (NRPs) are specific peptides synthesized by huge enzymatic complexes. Bacteria and fungi use this pathway to synthesize peptides with specific structures: they are composed of more than 500 different building blocks, called monomers, that can be proteinogenic amino acids, their derivatives, fatty acids and also glucids; they are not only linear but can also contain cycles and/or branches. This variety of structures gives them a variety of functions from antibiotics to biopesticides through siderophores.

We will present Norine [1] (http://bioinfo.cristal.univ-lille.fr/norine/), the unique computational platform dedicated to nonribosomal peptides. It is composed of a database containing valuable annotations on those compounds, including chemical structures and monomer graphs. The data comes from manual annotations entered by our team or by external experts throw MyNorine tool; and from automatic extraction form other databases. In both manual and automatic processes, verification ensures the high quality of the annotations. It also provides tools to analyze those compounds. A monomer graph can be drawn and searched against all graphs of the database [2]. The monomer graph can be inferred from the chemical structure of a peptide represented by a SMILES either by our tools rBAN [3] or s2m [4]. Last, the *Kendrick Formula Predictor* predicts the molecular formula of a NRP from its mass-to-charge ratio. Those tools may be extended to analyze other types of secondary metabolites, if they are composed of monomers.

Bibliography :

[1] Flissi A., Dufresne Y. et al. Nucleic Acids Research, 2016, 44(D1), D1113-D1118

- [2] Caboche S., Pupin, M. et al. BMC structural biology, 2009, 9(1):15
- [3] Ricart E, Leclère V, et al. Journal of cheminformatics, 2019, 11(1),13
- [4] Dufresne, Y., Noé, et al. Journal of Cheminformatics, 2015, 7(62).